

40183863

Ricardo Sánchez Marchand

Assessed Practical 2

Heartbleed

ELE8094 SwA

November 2016
rsanchezmarchand01@qub.ac.uk

Introduction
1. This report would explain the heartbleed vulnerability, in the first part it will contain an

overview of o OpenSSL, what should it do and his importance, what is heartbeat and
heartbleed.

2. Then it will explain the technical details of the bug and the nature of the fix.
3. At the end the important lessons learnt.

OpenSSL
OpenSSL is an open software based project. It is a fork and a successor of the SSLeay.
This project helps to implement in a system Secure Sockets Layers (SSL) , Transport Layer
Security (TLS), cryptography, etc.

It is intended to guarantee confidentiality, authenticity, and integrity for communications
between a client and the server. It should provide a robust, commercial-grade and full
featured toolkit. Is widely used which makes it very attractive for attackers, once you find a

1

vulnerability you can exploit it in a large number of devices. Including for example: Amazon,
Github, Pinterest, Reddit, SoundCLoud, SourceForge, Tumblr, Wikipedia, etc.

The most notable software using OpenSSL are the open source web servers like Apache
and nginx. The combined market share of just those two out of the active sites on the
Internet was over 66% according to Netcraft's April 2014 Web Server Survey. Furthermore
OpenSSL is used to protect for example email servers (SMTP, POP and IMAP protocols),
chat servers (XMPP protocol), virtual private networks (SSL VPNs), network appliances and
wide variety of client side software.

2

If you or your organization chooses to use this project constant updates are important. Only
from February 2015 to December there has been 9 High severity vulnerabilities.

Heartbeat
A handshake is required prior to any exchange of the data that should be protected in a
connection, but what happens if we are inactive for a short period and then we want to
transfer more data or we are no longer using the connection.

So the handshake is not required too often, or a connection kept alive for too long, we can
send a heartbeat. Heartbeats are periodical “I am still here messages please do not shut
down the connection”. It can be used in more ways for example to indicate the health of
really important software or hardware.

1 https://www.openssl.org/
2 http://heartbleed.com/

The message sent can have a payload (for example the time and date or some random
data). The server receives the payload and should answer back with the same payload plus
some more data. The code then transmits an OpenSSL heartbeat request are:

1. The single byte 0x01 (denoting that this is a TLS1_HB_REQUEST).
2. Two bytes containing the 16-bit representation of 34 (size of payload plus padding).
3. Two bytes of payload consisting of a 16-bit sequence number.
4. 16 bytes of random data making up the rest of the 18-byte payload.
5. 16 further random padding bytes, required by the standard.

3

Technical details

Heartbleed CVE-2014-0160 7th April 2014:
A missing bounds check in the handling of the TLS heartbeat extension can be used to
reveal up to 64kB of memory to a connected client or server (a.k.a. Heartbleed). This issue
did not affect versions of OpenSSL prior to 1.0.1. Reported by Neel Mehta. Fixed in
OpenSSL 1.0.1g (Affected 1.0.1f, 1.0.1e, 1.0.1d, 1.0.1c, 1.0.1b, 1.0.1a, 1.0.1).

4

It is called heartbleed because it exploits
a component of the heartbeat extension
(RFC6520).

If for example, an attacker sends 1 byte
of information, but it says that he sent 64
kb. The server would read 1 byte (what
he received) + all the memory that is
after until he reaches the 64k and send
everything back. It can retrieve
passwords, or any other sensitive
information as credit card numbers or
private data. Every time an attacker
sends a heartbleed, he can receive
different information.

Another example is if the attacker sends a 10 byte message but he says that it is 200 in size.
OpenSSL would not check if he has 200 he would believe it. If the server start to save data
in the slot 1089 (for example). It would read from 1089 to 1099 (the same data) and would
keep reading because it would have to retrieve 200. He would stop in the slot 1289 and
would send back everything back.

3 https://nakedsecurity.sophos.com/2014/04/08/anatomy-of-a-data-leak-bug-openssl-heartbleed/
4 https://www.openssl.org/news/vulnerabilities.html

If you are used to code with high-level programming language, maybe you do not
understand this but remember that OpenSSL is written in C and it calls direct slots in
memory which is something that a high level programming actively avoids.

 Heartbleed Code explanation.
5 6 7 8 9

The file with the code vulnerability is mostly in: /ssl/d1_both.c but the declaration of the
structure that contains the SSL record is in /ssl/record/record.h as we can see:
typedef struct ssl3_record_st {
 int rec_version;
 int type;
 size_t length;
 size_t orig_len;
 size_t off;
 unsigned char *data;
 unsigned char *input;
 unsigned char *comp;
 unsigned int read;
 unsigned long epoch;
 unsigned char seq_num[SEQ_NUM_SIZE];
} SSL3_RECORD;

The struct is used in the dtls1_process_heartbeat(SSL *s)
 dtls1_process_heartbeat(SSL *s)
 {
 unsigned char *p = &s->s3->rrec.data[0], *pl;
 unsigned short hbtype;
 unsigned int payload;
 unsigned int padding = 16; /* Use minimum padding */
 hbtype = *p++;
 n2s(p, payload);
 pl = p;

The n2s(p, payload) takes two bytes from p, and puts them in payload. These bytes are the
length of the payload in the heartbeat. The length in record is not checked. After OpenSSL
memory is allocated using that same payload length:
 unsigned char *buffer, *bp;
 int r;
 buffer = OPENSSL_malloc(1 + 2 + payload + padding);
 bp = buffer;

OpenSSL is allocating the amount of memory that the client wants and later in the same
function it copy that much memory into the buffer and then would send it back:

5 https://nakedsecurity.sophos.com/2014/04/08/anatomy-of-a-data-leak-bug-openssl-heartbleed/
6 https://www.seancassidy.me/diagnosis-of-the-openssl-heartbleed-bug.html
7 https://wiki.openssl.org/index.php/Manual:Ssl(3)#DATA_STRUCTURES
8 http://stackabuse.com/heartbleed-bug-explained/
9 https://git.openssl.org and https://github.com/openssl/openssl

*bp++ = TLS1_HB_RESPONSE;
 s2n(payload, bp);
 memcpy(bp, pl, payload);

The nature of the fix
There is code fix and intrusion detection and prevention systems (IDS/IPS) “fix”. Rules can
detect malicious heartbeat comparing the size of the request against the size of the reply.
This implies that IDS/IPS can be programmed to detect the attack but not to block and is
going to be too late.

The code fix on the other hand is very simple and effective avoiding the malicious
responses:

if (1 + 2 + 16 > s->s3->rrec.length)
 return 0; /* silently discard */

hbtype = *p++;
n2s(p, payload);
if (1 + 2 + payload + 16 > s->s3->rrec.length)

 return 0; /* silently discard per RFC 6520 sec. 4 */
pl = p;

OpenSSL now is checking that the heartbeat is not empty and that the payload and the
length matches.

The lessons
Most of the lessons are very straightforward and obvious, but we keep doing the same
mistakes over and over…

1. We should check every input, avoiding insecure interaction between computers and
or human with computers. “Do not trust anyone too much” is a good policy.

2. It is amazing how after more than two years there are still heartbleed vulnerable
systems. You may think that everyone has fixed but is not that way. In shodan there
are still +151,000 vulnerable services.

10

3. I understand that the OpenSSL is one of the best systems but we should not be
installing stuff that we don't fully understand, as the paper: “The Most Dangerous
Code in the World” says we should be very careful with what we don´t understand.

4. Have curiosity, if all the competent programmers that installed the code checked it a
little bit, the code would be great, but they trust entirely, maybe the curiosity to find
out how it works would have fixed this.

5. Understand different programming languages and why they are being used, the pros
and the cons. Pointers and memory allocations in this case were very sensitive.

6. Security audits for open codes, for example Core Infrastructure Initiative is a great
idea.

10 https://www.shodan.io/search?query=vuln%3Acve-2014-0160

Appendix
Hex dumps/screen shots of output

Heartbleed vulnerable services:

11

11 http://www.elladodelmal.com/2014/04/heartbleed-y-el-caos-de-seguridad-en.html

